\documentclass{jarticle}
\begin{document}
Mean : $\bar{x}$
\begin{eqnarray}
\bar{x} = \frac{x_1 + x_2 + \cdots + x_n} {n} =\sum^n_{i=1}x_i
\end{eqnarray}
Median : $\widetilde{x}$
\begin{eqnarray}
\widetilde{x}=\left\{ \begin{array}{ll}
the \, middle \, number \\
the\, mean\, of\, the\, pair\, of\, middle\, numbers \\
\end{array} \right.
\end{eqnarray}
Sum of squares : $S$
\begin{eqnarray}
S = \sum^n_{i+1}(x_i - \widetilde{x})^2 = \sum^n_{i=1}x_i^2 -\frac{(\sum^n_{i=1}x_i)^2}{n}
\end{eqnarray}
Unbiased variance : $V$
\begin{eqnarray}
V = = S/(n-1)=\sum^n_{i+1}((x_i - \bar{x})^2)^2 / (n - 1)
\end{eqnarray}
Standard deviation : $S.D.$
\begin{eqnarray}
S.D = \sqrt{V}
\end{eqnarray}
Range : $R$
\begin{eqnarray}
R = x_{max} - x_{min}
\end{eqnarray}
quantile deviation : $Q.D$
\begin{eqnarray}
Q.D = \frac{Q_3-Q_1}{2}
\end{eqnarray}
\pagestyle{empty}
\end{document}